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In this paper we address the problem of the valuation of Bermudan option derivatives in the
framework of multi-factor interest rate models. We propose a solution in which the exercise
decision entails a properly defined series expansion. The method allows for the fast
computation of both a lower and an upper bound for the option price, and a tight control of
its accuracy, for a generic Markovian interest rate model. In particular, we show detailed
computations in the case of the Bond Market Model. As examples we consider the case of a
zero coupon Bermudan option and a coupon bearing Bermudan option; in order to
demonstrate the wide applicability of the proposed methodology we also consider the case of a
last generation payoff, a Bermudan option on a CMS spread bond.
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1. Introduction

The evaluation of Bermudan options in multi-factor
interest rate models has always been challenging for
practitioners. A Bermudan call (put) bond option is an
option that gives the holder the right to buy (sell) at any
date ti (of a set of exercise opportunities {ti}i¼1, . . . ,N) at a
strike price Ki a bond with expiry in tNþ1, providing that
the right has not been exercised at any previous date in
the schedule. The difficulty in dealing with such deriva-
tives stems from the determination of the optimal exercise
decision.

This paper illustrates a method to evaluate a lower
bound for the Bermudan option in a multi-factor interest
rate framework via a series expansion in the exercise
decision: this allows fast and accurate control of the
approximation. Furthermore, in order to demonstrate the
quality of the proposed lower bound approximation, an
upper bound is provided via the duality technique. We
focus on Bermudan bond options, but similar results hold
in the swaption case, since the two classes of derivatives
are financially equivalent.

In the next section we delineate the Bermudan option
pricing problem. In sections 3 and 4 we introduce the
technique. In section 5 we briefly describe the Bond
Market Model that is used in the numerical examples of
sections 6 (zero coupon and coupon bearing) and 7 (CMS
spread); there we discuss in detail the accuracy features of
the proposed perturbative approach. Finally, in section 8,
we summarize the main results and state some concluding
remarks.

2. Problem formulation

We briefly introduce the notation in a way similar to
Glasserman (2003). We focus our attention on an
underlying B(t) that is an Rd-valued Markov process.
In particular, the jth component of the underlying, Bj(t),
can be, for example, the forward price in t of the zero
coupon bond that starts in tj and pays 1 in tjþ1.{ Let us
define hi (B(ti)) as the payoff received by the option holder
by exercising at time ti, Din as the discounting between
two reset dates ti and tn, and the continuation value Ci of

*Corresponding author. Email: roberto.baviera@rondpoint.it
{Another possible example of Bj(t) can be the jth forward Libor rate in a Libor Market Model.
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a Bermudan option at the exercise opportunity ti as the
value of holding rather than exercising the option.

The price C0 of a Bermudan option in t0, starting
from the initial condition B(t0)¼B

0, is the value achieved
by exercising optimally. From the holder’s point of view,
the Bermudan option pricing problem can be formu-
lated as the discounted payoff exercising at time ti with
the condition of not having exercised the option
previously

C0ðB0Þ ¼ sup
�2T

E0½D0�h�ðBð�ÞÞ jBðt0Þ ¼ B0�, ð1Þ

where E0[�] is the expectation conditional on the infor-
mation available at time t0 under the risk-neutral measure
and T the class of admissible stopping times with values
in {ti}i¼1, . . . ,N.

In order to choose the optimal exercise, the option
holder compares at each exercise date, on one hand, the
payoff he obtains by exercising the option immediately,
and, on the other, the value of holding it and waiting for
later exercise dates. The holder’s optimal behavior is to
exercise in ti only if

hiðBðtiÞÞ � CiðBðtiÞÞ: ð2Þ

The optimal stopping rule is to exercise when condition
(2) is satisfied for the first time.

We observe at this point that the continuation value
function Ci is itself a Bermudan option with exercise
opportunities tiþ15tiþ25� � �5tN; its value depends only
on the underlying B at time ti. It is then clear why pricing
Bermudan interest rate derivatives within a multi-factor
interest rate model is one of the most challenging
problems in option pricing theory. In fact, any Monte
Carlo valuation of Bermudan options requires, at each
exercise opportunity, the continuation value function, i.e.
the price of another Bermudan option: an excessive
computational effort is needed, as the number of Monte
Carlo simulations increases exponentially with the
number of exercise opportunities.

For this reason, in practice one estimates lower and
upper bounds of the true price. As already underlined
several times in the literature (Glasserman 2003 and
references therein), the standard technique when looking
for a lower bound of a Bermudan option entails two main
steps.

. Step 1: Find a good suboptimal exercise rule.

. Step 2: Compute the expected discounted payoff of
the option under this rule.

In order to check the quality of the lower bound, a
further step is needed in the evaluation process.

. Step 3: Find the associated upper bound using the
standard duality technique.

Any approximation ĈiðBÞ to the continuation value
determines a sub-optimal exercising decision and then a
lower bound for the Bermudan option. As stressed by
Glasserman (2003, p. 427), ‘the option value is usually not
very sensitive to the exact position of the exercise
boundary—the value is continuous across the

boundary—suggesting that even a rough approximation
to the boundary should produce a reasonable approxi-
mation to the optimal option value’.

In order to implement step 1 in the Bermudan pricing
problem and to approximate the boundary of the exercise
region at each ti, the common approach is to choose a
parametric class of continuation values ĈiðBÞ and then to
find the best suboptimal exercise rule within the class.
There are two popular methods among practitioners,
introduced by Andersen (2000) and Longstaff and
Schwartz (2001).

Andersen (2000) defines a threshold at each exercise
date ti and decomposes the maximization of the
Bermudan price into N� 1 subproblems, one for each
exercise opportunity except the last. However, it is not
easy to maximize the price of a Bermudan option as a
function of the exercise boundary, since, on one hand, as
we have said, the price value is not very sensitive to the
exact location of the exercise boundary, and, on the other,
numerical noise is present due to the Monte Carlo
estimations of the Bermudan value. Hence, convergence
is not granted (Glasserman 2003) and the optimization
can be dominated by the noise.

In this paper we propose to substitute the continuation
value in the optimal exercise decision (2) with a series
expansion of the true Ci; each approximated Ĉi is
obtained via a backward induction method starting
from the last (non-trivial) continuation value function
ĈN�1. The method does not involve any maximization.

In their work, Longstaff and Schwartz (2001) approx-
imate the continuation value function, as a function of the
underlying state, with a combination of basis functions;
the coefficients in this combination are estimated by
applying a regression to the simulated paths. The
convergence for this method has been proven by allowing
the number of simulated paths to increase to infinity while
holding the number of basis functions fixed (Clément
et al. 2002). In practice, for finite simulations, the stability
and robustness of the coefficients is often a problematic
issue, especially for the typically high-dimensional pro-
cesses involved in interest rates modeling. Recently,
Glasserman and Yu (2004) proved that, in the one-
factor log-normal case, in order to ensure the stability of
the coefficients, the number of paths in Monte Carlo
simulations should increase as O(exp(H2)), where H is the
number of coefficients in the combination of basis
functions (these results have recently been generalized
by Gerhold (2010)). In spite of the assumed generality of
the method, when dealing with multi-dimensional models,
coefficient robustness is a very difficult task to achieve
even considering an approximated continuation value
function that depends only linearly on underlying factors.
This limitation of the method is even more binding when
computing Greeks.

In this paper we show that when a simple-to-handle
function can be utilized as an approximation of the
continuation function, there is an elementary way to use
this (valuable) information; in the proposed methodology,
the coefficients are obtained via a Taylor expansion and
are therefore robust.
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Furthermore, as we discuss in section 4, the computa-
tion of step 3 is much slower than the other two, due to
the presence of two nested Monte Carlo simulations. For
this reason, an open problem for practitioners has been to
try to estimate accuracy by only computing the lower
bounds. An interesting recent development in this direc-
tion has been suggested by Kolodko and Schoenmakers
(2006), who report an iterative construction of lower
bounds; unfortunately, even their technique involves
nested simulations (in particular, each iteration step
requires one more simulation within the simulation).

The perturbative approach we propose in this paper
allows an easy estimation of the accuracy achieved via an
iterative construction of lower bounds that does not
involve nested simulations. This feature has interesting
consequences in practice when dealing with outstanding
high-dimensional problems such as interest rate
Bermudan options pricing.

3. Idea

Let us briefly describe the idea: we approximate the
continuation value ĈiðBÞ with Mi, a simpler function of B
that has a shape ‘reasonably’ similar to the continuation
value, and then add a correction

ĈiðBÞ ¼ MiðBÞ þ correction:

We note that CN¼ 0, and that CN�1(B) is a European
option that is already a ‘simple’ function, i.e. CN�1ðBÞ ¼
ĈN�1ðBÞ ¼ MN�1ðBÞ. The other corrections are then
chosen via an iterative algorithm. Suppose we have
already computed all the continuation values ĈnðBÞ for
n4i, we can then calculate ĈiðB0Þ, the Bermudan option
in ti computed on the initial condition by just running one
Monte Carlo simulation. This option depends only on the
approximated continuation values in the exercise deci-
sions at tiþ1, . . . , tN�1. For example, a first approximation
of ĈiðBÞ can be obtained by choosing

correction ¼ ĈiðB0Þ �MiðB0Þ:

With this choice on the initial condition B
0 the approx-

imated continuation value is equal to the Bermudan
option price ĈiðB0Þ. This is just an example to illustrate
the main idea of this paper: we try to approximate
the continuation function with a very simple non-
parametric rule.

The set of functions {M}i¼1, . . . ,N�1 we use in this
paper is defined through a set of functions En. In some
cases, these functions can be the European options
associated with the Bermudan pricing problem. When
En is the European option with exercise date in tn4ti,
valued in ti on B(ti) and with payoff hn(B(tn)), En is given
by

EnðB, tiÞ � Ei½DinhnðBðtnÞÞ jBðtiÞ ¼ B�, i5 n � N, ð3Þ

with Ei[�] the expectation conditional on the information
available until time ti under the risk-neutral measure.

In general, the functions En can be some guessed

functions valued in ti on the initial condition B(ti)¼B

with a non-null value up to tn4ti (after tn these functions

are identically equal to zero). Since the methodology we

propose in order to evaluate Bermudan options provides

both an upper and a lower bound, we can easily infer the

quality of these guess functions. Below, with an abuse of

notation, we call the functions En European options even

when they are just some guess functions.
In sections 6 and 7 we provide three examples: in the

first example, En is a European option, in the second it is

an excellent approximation of a European option and in

the third example En is just a guess function.
Once we have introduced the functions En, we define

MiðBÞ � EmðB, tiÞ, with 05 i5m � N, ð4Þ

where, among the European options with intermediate

expiry {En}n¼iþ1, . . . ,N, Em is the one with the highest

price when valued in ti on the initial forward discounts B0

EmðB0, tiÞ � EnðB0, tiÞ, 8n, i5 n � N:

Below we refer to {Mi}i¼1,. . .,N�1 as the maximal

European option valued in ti.

4. Technique

We show in detail how to construct a sequence of

approximated continuation values for the exercise deci-

sion (2). The continuation value at the second-last

exercise opportunity is CN�1(B)¼MN�1(B). For the

other dates the exact Ci(B) is substituted by Ĉ
f j g
i ðBÞ with

j¼ 0, 1, 2.
The zeroth-order approximation we consider does not

involve any correction term

Ĉ
f0g
i ðBÞ ¼ MiðBÞ: ð5Þ

The idea is that Mi is already a reasonable proxy for the

true Ci in the exercise decision. The next orders in the

approximation are iterative and proceed backwards

starting from the continuation value at the last exercise

date. When computing the continuation value Ĉ
f j g
i ðBÞ at a

given approximation level j we assume that we already

have all the continuation values Ĉ
f j g
n ðBÞ for every n4i.

The technique is divided into two steps.

. First, we calculate the Bermudan option Ĉ
f j g
i ðB0Þ on

the initial condition B
0, and its Deltas.

. Second, the approximated continuation value Ĉ
f j g
i

for a generic B is obtained via the expansion

Ĉ
f1g
i ðBÞ ¼ MiðBÞ þ cf1g0 ðiÞ, ð6Þ

Ĉ
f2g
i ðBÞ ¼ MiðBÞ þ cf2g0 ðiÞ þ

XN
n¼i

cf2g1 ði, nÞðlnBn � lnB0
nÞ,

ð7Þ
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where c are constant coefficients. In particular, we choose

the coefficients as those obtained in a Taylor expansiony

cf j g0 ðiÞ ¼
h
Ĉ

f j g
i �Mi

i
ðB0Þ, j ¼ 1, 2,

cf2g1 ði, nÞ ¼ B0
n

h
DC
n � DM

n

i
ðB0, iÞ,

ð8Þ

where Dn is the Delta of the option w.r.t. the zero coupon

bond Bn

DC
n ðB0, iÞ ¼ @

@B0
n

Ĉ
f2g
i ðB0Þ,

DM
n ðB0, iÞ ¼ @

@B0
n

MiðB0Þ:

We have thus obtained an approximation technique

that allows us to compute a sequence of continuation

values Ĉ
f j g
i . At first order, the continuation value is

approximated by the functionMi valued on the particular

realization of the discount factor curve in ti corrected with

a (positive) constant cf j g0 ðiÞ. This constant is equal to the

difference between Ĉi and Mi, both valued on the initial

discount curve B0. The assumptions are that Mi is a good

proxy for the true Ci when computing the exercise

condition and that, in the region of B relevant for the

valuation, the difference from the true value is approx-

imately constant. This constant is obtained by imposing

that the left- and right-hand sides of equation (6) are

equal on the initial condition B
0, which is equivalent to

considering a zero-order Taylor expansion centered on

the initial discount curve. The next approximation level of
the true exercise decision is to consider the next term in

the Taylor expansion. Therefore, equations (7) and (8)

look like a Greeks expansion up to the first order of the

Bermudan option. The next term in the expansion will

include the Gamma term, and so on. In practice, we take

the positive part of the correction, each time the function

Mi(B) is lower than (or equal to) the true continuation

value Ci(B), for example when {En}n¼i, . . . ,N are the ‘true’

European options associated with the Bermudan option

of interest. We stress that this choice of coefficients is

quite ‘natural’ since it includes the financially meaningful

terms, namely the Greeks of the option.
Once a proper approximation of the continuation

values has been obtained, it is straightforward to compute

the expected discounted payoff of the option through a

Monte Carlo simulation. In order to verify that this lower

bound provides a reasonable estimation of the true value,

we have to compute an upper bound. The continuation

value function used for the lower bound can also be used

for the upper bound through the methodology outlined

by Andersen and Broadie (2004) with a technique first

proposed by Haugh and Kogan (2004) and Rogers (2001)

(see also Jamshidian 2007 for an alternative method). We

only recall that the technique involves two nested Monte

Carlo simulations. For this reason, for a given numerical

precision, the upper bound is much slower to compute
than the lower bound of the corresponding Bermudan
option.

5. Model

In the numerical example below we limit our attention to
the case where the dynamics of the underlying is described
by the Bond Market Model, a recently introduced multi-
factor interest rate market model (Baviera 2006) belong-
ing to the HJM class that is particularly easy to handle.
This model presents several advantages when valuing
Bermudan options. In particular, European bond options
have Black-like solutions in some simple cases, the
discount factor is a deterministic function of the under-
lying B and implementing the numerical algorithm is
straightforward. In fact, if we consider the fixed set of
exercise opportunities t15t25� � �5tN, the discrete-time
process B(t0)¼B

0, B(t1), . . . ,B(tN) is a Markov chain on
Rd, and its transition probability can be written explicitly.
This allows one to use a large number of factors in a
Monte Carlo simulation with little computational effort.
In the appendix we briefly recall the main characteristics
and some properties of the model. The pricing scheme
described above, however, can be used in conjunction
with any Markovian model for the interest rates term
structure.

6. Numerical results

In order to demonstrate the quality of the approximation,
we first provide lower and upper bounds for 20-year
Bermudan call options with annual exercise opportunities
(N¼ 19) using the same dataset as Baviera (2006) with an
evaluation date t0 of 14 January 2005 at 11:15 a.m. C.E.T.

Figures 1 and 2 summarize the results respectively for a
zero coupon (ZC) and for a coupon bearing Bermudan
call option in a Bond Market Model with 19 factors for a
particular choice of strikes and coupons near the ATM.
The underlying of the ZC Bermudan call option is a ZC
bond that pays 1 at maturity t20¼ January 14, 2025; strike
Ki is the price that can be paid by the option holder in
order to buy the underlying ZC bond at time ti. The
coupon bearing Bermudan call option has as underlying a
bond with step-up annual coupons as shown in figure 2.
Strike prices are chosen equal to 1 (the notional amount),
i.e. the described coupon bearing Bermudan call option is
equivalent to a Bermudan swaption on a step-up swap.

At t0 we value the Bermudan options with a subset of
exercise opportunities: by L� and U� we denote the lower
bound and the upper bound of Bermudan options with
the first exercise opportunity at t�, where �¼ 1, . . . , 19.
The set of exercise dates is then t�, t�þ1, . . . , tN. In this way
we are able to quickly verify the quality of the

yHere we consider an expansion in the logarithm of Bn, since each forward zero coupon bond has a log-normal dynamics in
the Bond Market Model. The Libor Market Model case would be similar. This expansion describes the most frequent situation.
In a more general case it is possible to consider a Taylor expansion in Bn of the difference between Ĉi and Mi.
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approximation for different numbers of expiries. We plot

lower and upper bounds for �� 7; for larger � the

different price estimates coincide within the statistical

error for the first and second order of the approximation.
Let us stress that we have tested the methodology on a

case where Bermudan options are quite far from their

European analog: in fact, as shown in figure 3, the

exercise frequency is broadly distributed across all exer-

cise opportunities. We note that even the rough approx-

imation of the lower bound Lf0g
� , where we set the

continuation value function equal to the maximal

European option, provides reasonable results: prices are

approximately 30 bpsy lower than the true values for

�¼ 1. The order one approximation already provides a

very good estimate of the true price, implying that the

continuation value function is well approximated by the

maximal European option plus constant c0. The second

order provides an excellent estimate of the true value,

which lies well within market bid/ask spreads.
We considered several sets of strikes, obtaining similar

results. In particular, the method was tested for deeply

OTM Bermudan options:z for example, in a deeply OTM

step-down 20-year Bermudan optionx we observe that

even with the ‘rough’ approximation (the zeroth order)

we find excellent results: we obtain a lower bound a

couple of bps lower than the mid-price (equal to 77 bps

using the same number of paths as figures 1 and 2), well

within the market mid-bid spreads. Such a small error, for

a long Bermudan option valued with a 19-factor model, is

due to the Monte Carlo noise when computing the upper

bound and to the approximations discussed in appendix A.

In this case the first-order approximation improves the

‘rough’ lower bound of only half a basis point.

6.1. Accuracy

Let us comment briefly on accuracy. The standard way to

evaluate the accuracy achieved is to consider the differ-

ence between the upper and the lower bound:

Af j g
std ¼ Uf j g

� � Lf j g
� . The perturbative approach described

here allows an estimation of the accuracy with just
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Figure 2. For the same data set as figure 1, we plot annual
coupon bond Bermudan call options vs. the first expiry date
� (�¼ 1, . . . , 7). Strikes are equal to 1 and bond annual coupons
ci are stepped up by 0.2% every year for the first 10 years,
starting from 2.9% up to 4.7%, and are then constant. Option
values (as a percentage of the notional) are shown on the same
approximations for lower (L�) and upper bounds (U�) and are
computed using the same number of paths as in figure 1.

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

1 2 3 4 5 6 7

O
pt

io
n

va
lu

e

α

U{1}

U{2}

L{2}

L{1}

L{0}

Figure 1. Plot of the annually exercisable zero coupon
Bermudan call option values with first exercise date t�,
�¼ 1, . . . , 7, with t1¼ January 14, 2006, and the last exercise
date t19¼ January 14, 2024. The zero coupon maturity is
t20¼ January 14, 2025. We report lower (L�) and upper (U�)
bounds with �¼ 1, . . . , 7 valued in the Euro market on
Friday, January 14, 2005, at 11:15 a.m. C.E.T. (t0). The set
of strikes {Ki}i¼1, . . . , 19 is such that Ki¼ 8.75� 10�4i2þ
1.09� 10�2iþ 0.432. The prices (as a percentage of the notional)
according to the Bond Market Model are computed for three
orders of approximation for the lower bound L{j¼0,1,2} and for
two orders of approximation for the upper bound U{j¼1,2}.
L� are computed with 106 paths and U� using 5� 104 paths for
the main (outer) simulation and 103 paths for the nested (inner)
simulation.
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Figure 3. Exercise frequency (in percent) on each exercise date
for the Bermudan options on the zero coupon (ZC) and coupon
bearing bonds valued in the second-order approximation.

yA basis point (bp) is 0.01%.
zWe thank an anonymous referee for suggesting this analysis.
xAnnual coupons ci are chosen equal to 7% for the first year, 6% for the next two years, 5% for the next three years, 4% for the next
four years, and 1% from the 11th up to the last year.
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lower bounds. In this case, the jth order accuracy Af j g
est can

be obtained by computing

Af j g
est � Lf j g

� � Lf j�1g
� : ð9Þ

Table 1 shows, for the ZC case, the standard accuracy
and the estimation proposed. For example, for �¼ 1, the
estimation of the accuracy with just lower bounds (9) is
approximately 6 bps, i.e. very similar to the accuracy
obtained from the upper bound. As stressed above, the
computation of upper bounds, involving two nested
Monte Carlo simulations, requires longer computational
times than the corresponding lower bounds. When one
needs a fast estimation of the accuracy achieved, Aest is an
excellent solution since it is of the same order of
magnitude of the true accuracy.

7. Callable CMS spread

To illustrate the versatility of the proposed methodology,
we now apply it to the pricing of Bermudan options
struck on an underlying bond that pays at each reset date
the difference between two CMS rates with different tenor
(CMS spread). The bond is callable at par. This kind of
option is embedded in a large set of structured callable
bonds that have been issued in the last few years. In 2005
the issuance of leveraged CMS spread bonds in the
EURO market amounted to almost EUR 10 billion
(Citigroup 2006) and a significant part of these have
callable features. These bonds pay coupons that are
proportional to the CMS spread, and coupons are often
both floored and capped. The ith coupon is therefore

ci ¼ minfmax½zðSi;�1ðtiÞ � Si;�2 ðtiÞÞ,KL
i �,KU

i g,

where KL
i and KU

i are the floor and the cap strike
respectively, z is the leverage, the CMS rates {Si;�} with
tenor � are fixed at ti and the coupon is paid at tiþ1 (fixed
in advance, payment in arrears). For this kind of payoff,
where different rates are compared at each expiry, it is
crucial to use a multi-factor interest rate model for the
curve’s dynamics. As pointed out above, multi-factor
models make the use of standard pricing schemes of
Bermudan options extremely time consuming.

Even if an analytical expression for the European
option on a collared CMS spread bond is not available,
we can introduce a set of functions Mi that can be used in
the expansion of the continuation values (see appendix B

for further details). This example shows that, in the
proposed computational scheme, it is not necessary for En
to be a European option, but it is enough to have a good
guess that is fast to compute.

In figure 4 we consider a 10-year call option with
annual exercise opportunities (N¼ 9) on a bond where
�1¼ 10, �2¼ 2, z¼ 5, KL¼ 0.5% and KU¼ 8%. In order
to value this callable option we use a Bond Market Model
with 19 factors, as in previous sections. As before, the
evaluation time is 14 January 2005 at 11:15 a.m. C.E.T.
We consider the methodology only up to the first order of
approximation since both the lower and upper bounds are
already well within the market bid/ask. In figure 5 we
show the exercise frequency of the Bermudan option
across the exercise opportunities.

8. Conclusions

We have devised a computational scheme to price
Bermudan call options that is superior to standard

Table 1. Estimated lower bound price and
accuracy for the ZC Bermudan option.

� Lf2g
� (%) Af2g

std (bp) Af2g
est (bp)

1 3.977 6 6
2 3.977 5 6
3 3.952 4 5
4 3.891 4 4
5 3.796 3 4
6 3.675 1 2
7 3.516 0 2
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Figure 4. For the same data set as figure 1, we plot annual
10� 2 CMS spread Bermudan call options vs. the first expiry
date � (�¼ 1, . . . , 7). Option values (as a percentage of the
notional) are shown for approximation 1 for lower (L�) and
upper bounds (U�) and are computed using the same number of
paths as in figure 1.
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Figure 5. Exercise frequency (in percent) on each exercise date
for the Bermudan option on a collared 10� 2 CMS spread bond
valued in the first-order approximation.
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approaches, which can be time consuming when noisy
quantities are involved (as is the case when dealing with
expected values obtained through Monte Carlo simula-
tions). The methodology is based on a Taylor series
expansion of the exercise condition, which is expressed in
terms of financially meaningful quantities (option’s
Greeks). The basic ingredient is a simple-to-compute
approximation of the continuation function and a Monte
Carlo simulation mechanism for the underlying interest
rate dynamics. We stress that the methodology is quite
general for pricing callable products, since we do not need
a closed form for the corresponding European options,
but a simple guess in order to approximate the contin-
uation function: even some payoffs that are path-
dependent and with a relevant digital risk can be treated
within the described methodology. In the examples
discussed, the presence either of Black-like solutions for
the European options or of reasonable proxy functions
allow for a fast computation of the price.

In the plain vanilla cases, the second-order approxima-
tion is already very precise: the accuracy is less than a few
basis points for all expiries considered. This result is
confirmed irrespective of the choice of option moneyness.
In the case where we consider a CMS spread, already with
the first-order approximation we obtain an accuracy well
within the market bid/ask. Moreover, if even greater
accuracy is required, one can always consider the next
steps in the perturbative approach.

We have thus obtained a fast and accurate algorithm
for the valuation of Bermudan options. Speed and
accuracy are of crucial importance when managing
exotic options, especially if the computation of Greeks
is also required.
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models: results on fast and slow convergence. Ann. Appl.
Probab., 2011, 21, 589–608.

Glasserman, P., Monte Carlo Methods in Financial Engineering,
2003 (Springer: Berlin).

Glasserman, P. and Yu, B., Number of paths versus number of
basis functions in American option pricing. Ann. Appl.
Probab., 2004, 14, 2090–2119.

Haugh, M. and Kogan, L., Approximating pricing and
exercising of high-dimensional American options: a duality
approach. Oper. Res., 2004, 52, 258–270.

Heath, D., Jarrow, R. and Morton, A., Bond pricing and the
term structure of interest rates: a new methodology for
contingent claims valuation. Econometrica, 1992, 60, 77–105.

Jamshidian, F., The duality of optimal exercise and domineering
claims: a Doob–Meyer decomposition approach to the Snell
envelope. Stochastics: Int. J. Probab. Stochast. Process., 2007,
79, 27–60.

Kolodko, A. and Schoenmakers, J., Iterative construction of the
optimal Bermudan stopping time. Finance Stochast., 2006, 10,
27–49.

Longstaff, F.A. and Schwartz, E.S., Valuing American options
by simulation: a simple least-squares approach. Rev. Financial
Stud., 2001, 14, 113–147.

Rogers, L.G.G., Monte Carlo valuation of American options.
Math. Finance, 2001, 12, 271–286.

Appendix A: Bond Market Model

In this appendix we briefly recall the Bond Market

Model, a multi-factor Heath–Jarrow–Morton model

(Heath et al. 1992), and report the analytical formulas

for pricing European bond options. A detailed description

of the model and the main results can be found in Baviera

(2006). In the spot measure, the dynamics for each

(forward) zero coupon Bj is

dBjðtÞ ¼ BjðtÞvjðtÞ �
Xj�1

l¼kðtÞþ1

�vl ðtÞdtþ dWðtÞ
" #

, ðA1Þ

where vj(t), j¼ 1, . . . ,N, are d-dimensional vectors of

deterministic functions of time, with vj(t)¼ 0 for t� tj,

W is a d-dimensional Brownian motion with instanta-

neous covariance �¼ (�lm¼1, . . . , d), and the function k(t) :

R!N denotes the previous reset date

kðtÞ ¼ k, when tk � t5 tkþ1:

The three main properties of the Bond Market Model

when pricing Bermudan options are:

(1) the discrete-time process B(t0)¼B
0, B(t1), . . . ,B(tN)

is a Markov chain whose transition probability can

be written explicitly and the dynamics is trivial to

simulate;
(2) the discount factor can be written as a function of B

Din ¼
Yn�1

j¼i

Bj ðtjÞ;

(3) call and put European options on both zero

coupon and coupon bearing bonds can be written

as Black formulae.
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For a coupon bearing Bermudan option with strike Ki,
the payoff at ti is

hiðBðtiÞÞ � ½PiNþ1ðBðtiÞ; cÞ � Ki�þ,

where the superscript þ denotes the positive part of the
argument, and the coupon bond that starts at ti ends at
tNþ1 and has Nþ 1� i calculation periods with coupon
vector c¼ {cr}r¼i, . . . ,N,

PiNþ1ðBðtiÞ; cÞ �
XN
r¼i

cr�rBi rþ1ðtiÞ þ BiNþ1ðtiÞ,

with lag �i� tiþ1� ti. The forward zero coupon bond that
starts at ti and pays 1 at tNþ1 is

BiNþ1ðtÞ �
YN
n¼i

BnðtÞ, for i � N:

The price of a call option at ti on the coupon bearing
bond PnNþ1(B; c) with exercise date tn4ti and strike Kn is
a Black-like formula

EnðB, tiÞ ¼ BsnfPnNþ1ðB; cÞN ½dðnÞ1 ðB, tiÞ� � KnN ½dðnÞ2 ðB, tiÞ�g,
ðA2Þ

where

d
ðnÞ
1 ðB, tiÞ ¼

1

VnNþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
tn � ti

p ln
PnNþ1ðB; cÞ

Kn
þ 1

2
VnNþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
tn � ti

p
,

d
ðnÞ
2 ðB, tiÞ ¼

1

VnNþ1
ffiffiffiffiffiffiffiffiffiffiffiffi
tn � ti

p ln
PnNþ1ðB; cÞ

Kn
� 1

2
VnNþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
tn � ti

p

and

V2
nNþ1 ¼

1

tn� ti

XNþ1

i, j¼nþ1

�nNþ1
i �nNþ1

j

Xi�1

l¼n

Xj�1

m¼n

Z tn

ti

vlðtÞ�lmvmðtÞdt,

where we define

�nNþ1
i � 1PNþ1

r¼nþ1 cr�1�r�1B0
nr þ B0

nNþ1

�
ci�1�i�1B

0
ni, i � N,

ð1þ cN�NÞB0
nNþ1, i ¼ Nþ 1:

(

The zero coupon European call option is the limit for zero
coupons of equation (A2).

Appendix B: Collared CMS spread

In this appendix we show that, within the Bond Market
Model, a suitable set of functions En(B, ti) can also be
defined in a last generation payoff as a collared CMS
spread Bermudan option. When a payoff of a curve’s
spread is involved, we clearly need a multi-factor interest
rate model. In order to apply the proposed methodology
we need to specify only the set of functions En(B, ti). From
these, as explained in section 2, one can easily deduce the
set of functions Mi that are the basic ingredients in the
expansion.

Three sets of dates (and the corresponding indices) are

relevant.

. ti: the date when the Bermudan option holder has

the right to exercise the option, i.e. the date where
we need to value the function Mi in the proposed

approximation procedure;
. tn: the expiry date of each function En(B, ti) valued at

tn (i5n�N);
. tj: the fixing date of each coupon in the underlying

bond of En(B, ti) (n� j�N).

The two CMS swap rates in each coupon (for simplic-
ity, we assume that the jth coupon is fixed in advance at tj
and is paid annually with a 30/360 day count convention

at tjþ1) have respectively the tenor �1 and �2. The coupon
is floored by KL and capped by KU, the leverage is z and ki
is the issuer’s funding spread over Libor for the period

(ti, tiþ1). This funding spread is assumed to be equal to

zero in the numerical example reported in this paper.
Let us first introduce the basic notation for this payoff.

We define the (forward) swap rate at time t fixed at tj with

tenor �,

Sj;�ðtÞ ¼
1� Bj jþ�ðtÞ
BPVj jþ�ðtÞ

, with t � tj,

the (forward) Libor rate at time t fixed at tj and
calculation period (tj, tjþ1),

Lj ðtÞ ¼ Sj;1ðtÞ ¼
1

�j

1

Bj ðtÞ
� 1

� �
, with t � tj,

and the (forward) basis point value

BPVjmðtÞ �
Xm�1

l¼j

�iBj lþ1ðtÞ, with t � tj:

We also define the two sets of weights that are used

wn
j �

Bn jþ1ðtiÞ�j
BPVnNþ1ðtiÞ

, n � j � N,

and

� j jþ�
k �

Sj;�ðt0Þ�k�1Bjkðt0Þ, j5 k5 jþ �,

ð1þ Sj;�ðt0Þ�jþ��1ÞBj jþ�ðt0Þ, k ¼ jþ �:

(

The functions En(B(ti), ti) can be chosen as

EnðBðtiÞ, tiÞ
¼ BinðtiÞBPVnNþ1ðtiÞ

� ½ ~SðtiÞ � KðtiÞ�Nð ~dÞ þ V
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tn � ti
2p

r
exp �

~d
2

2

 !( )
, ðB1Þ

with

~d ¼
~SðtiÞ � KðtiÞ
V ffiffiffiffiffiffiffiffiffiffiffiffiffi

tn � ti
p :

The volatility V is defined as

V2 ¼ 1

tn � ti

Z tn

ti

~VðtÞ� ~VðtÞdt,
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where

~VðtÞ ¼
XN
j¼n

wn
j ½zð ~Vj;�1ðtÞ � ~Vj;�2 ðtÞÞ � ~vj ðtÞ�:

The effective strike at time ti is approximated by

KðtiÞ ¼
XN
j¼n

wn
j kj,

and the effective rate by

~SðtiÞ ¼
XN
j¼n

wn
j ½zmin½max½ ~Sj;�1ðtiÞ

� ~Sj;�2 ðtiÞ,KL=z�,KU=z� � ~LjðtiÞ�:
The CMS rates ~Sj;�ðtiÞ and the Libor rate ~LjðtiÞ in the
above formula can be seen as the swap and Libor rates
plus corrections (that are specified below)

~Sj;�ðtiÞ ¼ Sj;�ðtiÞ þ �Sj;�ðtiÞ,
~LjðtiÞ ¼ LjðtiÞ þ �LjðtiÞ

and rate volatilities are

~Vj;�ðtÞ �
1

BPVj jþ�ðt0Þ
Xjþ�

k¼jþ1

� j jþ�
k vjkðtÞ,

~vj ðtÞ �
vj ðtÞ

Bj ðt0Þ�j
ej,

vjkðtÞ �
Xk�1

l¼j

vl ðtÞel,

for t� tj (otherwise they are equal to zero); {el}l¼1, . . . , d is

the set of base vectors in Rd. In the Bond Market Model,

rate corrections can be approximated in ti as

� ~Sj;�ðtiÞ ¼ ðV j;���j;� � V j;��vjÞðtj � tnÞ
þ ðV j;���j;� � V j;���nNþ1 þ V j;��vnjÞðtn � tiÞ
þ bj ðtiÞ,

� ~LjðtiÞ ¼ ð� ~vj��nNþ1 þ ~vj�vn jþ1Þðtn � tiÞ,

where

V j;���j;� �
1

tj � tn

Z tj

tn

~Vj;�ðtÞ� ~�j;�ðtÞdt,

V j;���n Nþ1 �
1

tj � tn

Z tj

tn

~Vj;�ðtÞ� ~�n Nþ1ðtÞdt,

V j;��vj;� �
1

tj � tn

Z tj

tn

~Vj;�ðtÞ�vj;�ðtÞdt,

~�j;�ðtÞ �
Xjþ��1

k¼j

�jBj kþ1ðtÞ
BPVj jþ�ðtÞ

vjkðtÞ,

and bj(ti) is a basis correction for the CMS rate ~Sj;�ðtÞ, a
correction that is simply set equal to zero in the numerical

examples reported here.
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